光譜學(xué)知識(shí)詳細(xì)介紹
光譜學(xué)是光學(xué)的一個(gè)分支學(xué)科,它主要研究各種物質(zhì)的光譜的產(chǎn)生及其同物質(zhì)之間的相互作用。光譜是電磁輻射按照波長的有序排列,根據(jù)實(shí)驗(yàn)條件的不同,各個(gè)輻射波長都具有各自的特征強(qiáng)度。
通過光譜的研究,人們可以得到原子、分子等的能級(jí)結(jié)構(gòu)、能級(jí)壽命、電子的組態(tài)、分子的幾何形狀、化學(xué)鍵的性質(zhì)、反應(yīng)動(dòng)力學(xué)等多方面物質(zhì)結(jié)構(gòu)的知識(shí)。但是,光譜學(xué)技術(shù)并不僅是一種科學(xué)工具,在化學(xué)分析中它也提供了重要的定性與定量的分析方法。
光譜學(xué)的發(fā)展簡史
光譜學(xué)的研究已有一百多年的歷史了。1666年,牛頓把通過玻璃棱鏡的太陽光分解成了從紅光到紫光的各種顏色的光譜,他發(fā)現(xiàn)白光是由各種顏色的光組成的。這是可算是最早對(duì)光譜的研究。
其后一直到1802年,渥拉斯頓觀察到了光譜線,其后在1814年夫瑯和費(fèi)也獨(dú)立地發(fā)現(xiàn)它。牛頓之所以沒有能觀察到光譜線,是因?yàn)樗固柟馔ㄟ^了圓孔而不是通過狹縫。在1814~1815年之間,夫瑯和費(fèi)公布了太陽光譜中的許多條暗線,并以字母來命名,其中有些命名沿用至今。此后便把這些線稱為夫瑯和費(fèi)暗線。
實(shí)用光譜學(xué)是由基爾霍夫與本生在19世紀(jì)60年代發(fā)展起來的;他們證明光譜學(xué)可以用作定性化學(xué)分析的新方法,并利用這種方法發(fā)現(xiàn)了幾種當(dāng)時(shí)還未知的元素,并且證明了太陽里也存在著多種已知的元素。
從19世紀(jì)中葉起,氫原子光譜一直是光譜學(xué)研究的重要課題之一。在試圖說明氫原子光譜的過程中,所得到的各項(xiàng)成就對(duì)量子力學(xué)法則的建立起了很大促進(jìn)作用。這些法則不僅能夠應(yīng)用于氫原子,也能應(yīng)用于其他原子、分子和凝聚態(tài)物質(zhì)。
氫原子光譜中最強(qiáng)的一條譜線是1853年由瑞典物理學(xué)家埃斯特朗探測(cè)出來的。此后的20年,在星體的光譜中觀測(cè)到了更多的氫原子譜線。1885年,從事天文測(cè)量的瑞士科學(xué)家巴耳末找到一個(gè)經(jīng)驗(yàn)公式來說明已知的氫原子諾線的位置,此后便把這一組線稱為巴耳末系。繼巴耳末的成就之后,1889年,瑞典光譜學(xué)家里德伯發(fā)現(xiàn)了許多元素的線狀光譜系,其中最為明顯的為堿金屬原子的光譜系,它們也都能滿足一個(gè)簡單的公式。
盡管氫原子光譜線的波長的表示式十分簡單,不過當(dāng)時(shí)對(duì)其起因卻茫然不知。一直到1913年,玻爾才對(duì)它作出了明確的解釋。但玻爾理論并不能解釋所觀測(cè)到的原子光譜的各種特征,即使對(duì)于氫原子光譜的進(jìn)一步的解釋也遇到了困難。
能夠滿意地解釋光譜線的成因的是20世紀(jì)發(fā)展起來的量子力學(xué)。電子不僅具有軌道角動(dòng)量,而且還具有自旋角動(dòng)量。這兩種角動(dòng)量的結(jié)合便成功地解釋了光譜線的分裂現(xiàn)象。
電子自旋的概念首先是在1925年由烏倫貝克和古茲密特作為假設(shè)而引入的,以便解釋堿金屬原子光譜的測(cè)量結(jié)果。在狄喇克的相對(duì)論性量子力學(xué)中,電子自旋(包括質(zhì)子自旋與中子自旋)的概念有了牢固的理論基礎(chǔ),它成了基本方程的自然結(jié)果而不是作為一種特別的假設(shè)了。
1896年,塞曼把光源放在磁場中來觀察磁場對(duì)光三重線,發(fā)現(xiàn)這些譜線都是偏振的?,F(xiàn)在把這種現(xiàn)象稱為塞曼效應(yīng)。次年,洛倫茲對(duì)于這個(gè)效應(yīng)作了滿意的解釋。
塞曼效應(yīng)不僅在理論上具有重要意義,而且在應(yīng)用中也是重要的。在復(fù)雜光譜的分類中,塞曼效應(yīng)是一種很有用的方法,它有效地幫助了人們對(duì)于復(fù)雜光譜的理解。
光譜學(xué)的內(nèi)容
根據(jù)研究光譜方法的不同,習(xí)慣上把光譜學(xué)區(qū)分為發(fā)射光譜學(xué)、吸收光譜學(xué)與散射光譜學(xué)。這些不同種類的光譜學(xué),從不同方面提供物質(zhì)微觀結(jié)構(gòu)知識(shí)及不同的化學(xué)分析方法。
發(fā)射光譜可以區(qū)分為三種不同類別的光譜:線狀光譜、帶狀光譜和連續(xù)光譜。線狀光譜主要產(chǎn)生于原子,帶狀光譜主要產(chǎn)生于分子,連續(xù)光譜則主要產(chǎn)生于白熾的固體或氣體放電。
現(xiàn)在觀測(cè)到的原子發(fā)射的光譜線已有百萬條了。每種原子都有其獨(dú)特的光譜,猶如人的指紋一樣是各不相同的。根據(jù)光譜學(xué)的理論,每種原子都有其自身的一系列分立的能態(tài),每一能態(tài)都有一定的能量。
我們把氫原子光譜的最小能量定為最低能量,這個(gè)能態(tài)稱為基態(tài),相應(yīng)的能級(jí)稱為基能級(jí)。當(dāng)原子以某種方法從基態(tài)被提升到較高的能態(tài)上時(shí),原子的內(nèi)部能量增加了,原子就會(huì)把這種多余的能量以光的形式發(fā)射出來,于是產(chǎn)生了原子的發(fā)射光譜,反之就產(chǎn)生吸收光譜。這種原子能態(tài)的變化不是連續(xù)的,而是量子性的,我們稱之為原子能級(jí)之間的躍遷。
在分子的發(fā)射光譜中,研究的主要內(nèi)容是二原子分子的發(fā)射光譜。在分子中,電子態(tài)的能量比振動(dòng)態(tài)的能量大50~100倍,而振動(dòng)態(tài)的能量比轉(zhuǎn)動(dòng)態(tài)的能量大 50~100倍。因此在分子的電子態(tài)之間的躍遷中,總是伴隨著振動(dòng)躍遷和轉(zhuǎn)動(dòng)躍遷的,因而許多光譜線就密集在一起而形成帶狀光譜。
從發(fā)射光譜的研究中可以得到原子與分子的能級(jí)結(jié)構(gòu)的知識(shí),包括有關(guān)重要常數(shù)的測(cè)量。并且原子發(fā)射光譜廣泛地應(yīng)用于化學(xué)分析中。
當(dāng)一束具有連續(xù)波長的光通過一種物質(zhì)時(shí),光束中的某些成分便會(huì)有所減弱,當(dāng)經(jīng)過物質(zhì)而被吸收的光束由光譜儀展成光譜時(shí),就得到該物質(zhì)的吸收光譜。幾乎所有物質(zhì)都有其獨(dú)特的吸收光譜。原子的吸收光譜所給出的有關(guān)能級(jí)結(jié)構(gòu)的知識(shí)同發(fā)射光譜所給出的是互為補(bǔ)充的。
一般來說,吸收光譜學(xué)所研究的是物質(zhì)吸收了那些波長的光,吸收的程度如何,為什么會(huì)有吸收等問題。研究的對(duì)象基本上為分子。
吸收光譜的光譜范圍是很廣闊的,大約從10納米到1000微米。在200納米到800納米的光譜范圍內(nèi),可以觀測(cè)到固體、液體和溶液的吸收,這些吸收有的是連續(xù)的,稱為一般吸收光譜;有的顯示出一個(gè)或多個(gè)吸收帶,稱為選擇吸收光譜。所有這些光譜都是由于分子的電子態(tài)的變化而產(chǎn)生的。
選擇吸收光譜在有機(jī)化學(xué)中有廣泛的應(yīng)用,包括對(duì)化合物的鑒定、化學(xué)過程的控制、分子結(jié)構(gòu)的確定、定性和定量化學(xué)分析等。
分子的紅外吸收光譜一般是研究分子的振動(dòng)光譜與轉(zhuǎn)動(dòng)光譜的,其中分子振動(dòng)光譜一直是主要的研究課題。
分子振動(dòng)光譜的研究表明,許多振動(dòng)頻率基本上是分子內(nèi)部的某些很小的原子團(tuán)的振動(dòng)頻率,并且這些頻率就是這些原子團(tuán)的特征,而不管分子的其余的成分如何。這很像可見光區(qū)域色基的吸收光譜,這一事實(shí)在分子紅外吸收光譜的應(yīng)用中是很重要的。多年來都用來研究多原子分子結(jié)構(gòu)、分子的定量及定性分析等。
在散射光譜學(xué)中,喇曼光譜學(xué)是最為普遍的光譜學(xué)技術(shù)。當(dāng)光通過物質(zhì)時(shí),除了光的透射和光的吸收外,還觀測(cè)到光的散射。在散射光中除了包括原來的入射光的頻率外(瑞利散射和廷德耳散射),還包括一些新的頻率。這種產(chǎn)生新頻率的散射稱為喇曼散射,其光譜稱為喇曼光譜。
喇曼散射的強(qiáng)度是極小的,大約為瑞利散射的千分之一。喇曼頻率及強(qiáng)度、偏振等標(biāo)志著散射物質(zhì)的性質(zhì)。從這些資料可以導(dǎo)出物質(zhì)結(jié)構(gòu)及物質(zhì)組成成分的知識(shí)。這就是喇曼光譜具有廣泛應(yīng)用的原因。
由于喇曼散射非常弱,所以一直到1928年才被印度物理學(xué)家喇曼等所發(fā)現(xiàn)。他們?cè)谟霉療舻膯紊鈦碚丈淠承┮后w時(shí),在液體的散射光中觀測(cè)到了頻率低于入射光頻率的新譜線。在喇曼等人宣布了他們的發(fā)現(xiàn)的幾個(gè)月后,蘇聯(lián)物理學(xué)家蘭茨見格等也獨(dú)立地報(bào)道了晶體中的這種效應(yīng)的存在。
喇曼效應(yīng)起源于分子振動(dòng)(和點(diǎn)陣振動(dòng))與轉(zhuǎn)動(dòng),因此從喇曼光譜中可以得到分子振動(dòng)能級(jí)(點(diǎn)陣振動(dòng)能級(jí))與轉(zhuǎn)動(dòng)能級(jí)結(jié)構(gòu)的知識(shí)。
喇曼散射強(qiáng)度是十分微弱的,在激光器出現(xiàn)之前,為了得到一幅完善的光譜,往往很費(fèi)時(shí)間。自從激光器得到發(fā)展以后,利用激光器作為激發(fā)光源,喇曼光譜學(xué)技術(shù)發(fā)生了很大的變革。激光器輸出的激光具有很好的單色性、方向性,且強(qiáng)度很大,因而它們成為獲得喇曼光譜的近乎理想的光源,特別是連續(xù)波氬離子激光器與氨離子激光器。于是喇曼光譜學(xué)的研究又變得非常活躍了,其研究范圍也有了很大的擴(kuò)展。除擴(kuò)大了所研究的物質(zhì)的品種以外,在研究燃燒過程、探測(cè)環(huán)境污染、分析各種材料等方面喇曼光譜技術(shù)也已成為很有用的工具。